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We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities
in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities
fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present
situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipa-
tion strength, Luttinger liquid parameter K, and the deviation from the resonance condition is obtained. For
weak dissipation and 1 /2�K�1, the conduction shows a nonmonotonic increase as a function of temperature
or voltage. For strong dissipation the conduction increases monotonically but is exponentially small.
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I. INTRODUCTION

Once a quantum mechanical particle traveling in one-
dimensional space hits a potential barrier formed by an im-
purity, it is reflected with a finite probability. This is not
longer true in the case of two consecutive identical barriers
forming a quantum dot: the waves reflected at the first and
the second barrier may interfere destructively such that there
is perfect transmission. The condition for the latter reads
tan�ka�=−�2k / �mU0�. Here m and k denotes the mass and
the wavevector of the incoming wave and a is the spacing
between the two barriers which are here assumed to be delta
functions of the strength U0. For small and large U0 this
resonance corresponds to the conditions ka= �n+1 /2�� and
ka= �n+1��, respectively, where n�0 is an integer. Thus,
for large U0 the resonance happens if the incident particle
has the same energy as one of the bound states formed be-
tween the barriers, provided they are impenetrable.

So far we considered free electrons. In this paper we will
examine the case of interacting electrons in one dimension
where the interaction can be parameterized by a single pa-
rameter K with K�1�K�1� for repulsive �attractive�
interaction.1,2 Then, in the case of scattering at an isolated
impurity, attractive �repulsive� interaction leads to perfect
transmission �reflection� at low energies.3

If two consecutive strong impurities are present, the phys-
ics is influenced by the Coulomb blockade in the quantum
dot. As was shown by Kane and Fisher4,5 and by Furusaki
and Nagaosa,6 resonant transmission of spinless electrons is
then possible provided kFa= �n+ 1

2 ��, where kF is the Fermi
momentum and n�0 is an integer. At resonance the ground
state of the dot is doubly degenerate and has n�=q0�1 /2
particles inside, where q0=kFa /� denotes the background
charge between the two impurities. Note that this resonance
condition is independent of the impurity strength U0 in the
interacting case.4,5 Tunneling through impurities is sequential
at resonance. If one starts with the n− state of the dot, adding
a particle to the dot does not change the Coulomb energy. In
second tunneling step the particle number in the dot goes
back to n−. In a similar way we may start with the n+ state
and then first decrease n+ by one, which is followed by a

second electron tunneling into the dot to get back to the
original state n+.

Thus under resonance conditions adding �or removing� an
electron does not change the Coulomb energy inside the dot.
Renormalization group analysis of the impurity strength then
shows that perfect transmission is still present for weak im-
purities as long as K�1 /4.4–6 For strong impurities perfect
transmission survives for K�1 /2. The conductance in both
cases is given by e2 /h. Therefore, similar to the noninteract-
ing case, the existence of a second impurity increases the
tendency toward perfect transmission for not too strong re-
pulsive interaction.

Adding an electron off-resonance is accompanied by an
energy increase which has to be provided either by a thermal
bath or by a finite external voltage. A thermal bath as well as
a finite voltage drop across the dot also allows sequential
tunneling off-resonance, which leads to power laws of the
conductance as a function of temperature or voltage. If both
are small enough, sequential tunneling is suppressed and tun-
neling occurs in one step via the formation of a virtual state
in the dot �cotunneling�.

In the present paper we want to study the influence of
ohmic dissipation on the scenario presented so far. As dis-
cussed recently in Ref. 7, ohmic dissipation may result from
the coupling of electrons in the Luttinger liquid to normal
Fermi-liquid like electrons in nearby gates. Under the condi-
tions considered in Ref. 7 coupling to the gate is relevant
only for K�K�=1 /2. However, other scenarios are conceiv-
able, and in the following we will assume that K� may take
also larger values. We will therefore assume that dissipation
is present. Clearly, for K�K� our results have to be replaced
by those of the dissipation free case. Dissipation introduces a
length scale L��1 / �K�� where � denotes the dissipation
strength. On scales larger than L� the plasmon excitations of
the electrons become diffusive and displacement fluctuations
are strongly suppressed, restoring translational long-range
order �Wigner crystal�. If Kv��	, the conductivity 
�

=2KL�e2 /h is finite which is paralleled by diverging super-
fluid fluctuations. We have recently shown8 that dissipation
has a dramatic influence on the tunneling of electrons
through a single impurity, which is strongly suppressed. The
voltage and temperature dependence of the conductance is
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reduced from power laws in the dissipation free case to an
exponential dependence for all K�K� at low energies. Thus
there is no region of perfect transmission anymore with a
single impurity. In the present paper we want to extend these
considerations to the case of two impurities.

The paper is organized as follows. In Sec. II we present a
model for spinless electrons in the presence of dissipation
and with two impurities. Using the instanton method we
study the electron tunneling through impurities driven by an
external voltage or temperature. The conductance of the sys-
tem is calculated in Sec. III for the cotunneling case, and in
Sec. IV for the sequential tunneling. We conclude the paper
in Sec. V. Some technical details are presented in Appendi-
ces.

II. TUNNELING PROBABILITY

A. Model

We consider a one-dimensional interacting system of
spinless electron with two impurities coupled to a dissipative
bath. The impurities are at positions x= �a /2. We will refer
to the spacing between the impurities as the quantum dot.
Using the standard bosonization methods,2,9 the Euclidean
action for this system is

S

�
= �

−L/2

L/2

dx�
−��/2

��/2

d�� 1

2�K
�1

v
����2 + v��x�2�

+ �
U0

�
���x − a/2� + ��x + a/2�	


+
�

4
�

−L/2

L/2

dx�
−��/2

��/2

d��
−��/2

��/2

d��
��x,�� − �x,���	2

��� sin
��� − ���

��
�2 .

�1�

Here the displacement field �x ,�� is related to the electron
density � by

� =
kF

�
−

1

�
�x +

kF

�
cos�2 − 2kFx� + ¯ . �2�

The first term of action �1� is the well-known Tomonaga-
Luttinger model. The parameter K measures the interactions
between electrons, where K�1�K�1� for repulsive �attrac-
tive� interaction between electrons. v is the velocity of the
plasmon excitations. The second part in action �1� is the
contributions from the two impurities, where we have as-
sumed that the two impurities have the same strength U0.

The third piece describes Ohmic dissipation.10 It was
shown in Ref. 7 that a dissipation term of the form

−
�

2
�

−L/2

L/2

dx�
−��/2

��/2

d��
−��/2

��/2

d��
cos��x,�� − �x,���	

��� sin
��� − ���

��
�2

�3�

results from the coupling of the electrons in the wire to
Fermi-fluid electrons in a nearby gate, where � is a coupling

constant. When the coupling is relevant, Eq. �3� can be ex-
panded up to quadratic terms, which has been done in Eq.
�1�.

Integrating out the bulk phase field �x ,�� except �x=
−a /2,�� and �x=a /2,��, we obtain the effective action as

S

�
=

1

2K��
�
	n

� 1

I+�	n�
�+�	n��2 +

1

I−�	n�
�−�	n��2�

+ U� d� cos�+���	cos�−��� − kFa	 , �4�

where

���� = �a/2,�� � �− a/2,�� , �5�

��	n� =� d�ei	n�����, 	n =
2�n

��
, �6�

I��	n� =
��1 � e−�a/v�	n

2+�	n�v�K�
	n

2 + �	n�v�K
, �7�

and U=2kFU0 / ���� denotes the dimensionless pinning
strength.

B. Classical ground state and excitations

We will first look at the classical ground state, where
�x ,����x�, which corresponds to the weak quantum fluc-
tuation limit K�1. In fact our further calculations are strictly
justified only in this case although we will also apply our
results for K=O�1�. The field − is related to the charge Q
�in units of the elementary charge� accumulated between the
two impurities by

Q = �
−a/2

a/2

dx��x� = q0 −
−

�
, �8�

where q0=kFa /� denotes the background charge between
the impurities. From Eq. �1�, we now obtain

Sclass.

�
=

Ec

2T
�Q − q0�2 +

2kFU0

�T
cos + cos��Q� , �9�

where the Coulomb energy of the quantum dot is

Ec =
1

�a
, � =

K

�v�
, �10�

where � denotes the compressibility. In the ground state,
action �9� has to be minimal. For the rest of the paper we will
assume strong impurities kFU0�EC�T. As a result Q has to
be an integer. Then, minimizing the first term in Eq. �9�, one
obtains Q=Q0= �q0	G, where �x	G denotes the closest integer
to x. Minimizing the second term gives += �Q+2m+1��,
where m is an integer. The corresponding ground-state values
for ��a /2� are

�− a/2� =
1

2
��2m + 1�� − kFa	 ,
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�a/2� =
1

2
��2m + 1�� + kFa	 + �Q . �11�

In the following it is convenient to express the background
charge in the dot as

q0 = n +
1

2
− � , �12�

where n is an integer and −1 /2���1 /2. This gives Q0
=n if ��0 and Q0=n+1 if ��0. For �=0 the ground state
is twofold degenerate, allowing Q0=n and Q0=n+1, respec-
tively.

As already observed by Kane and Fisher4 the action �9�
remains invariant under the transformation +→++2�.
This transformation corresponds to the transfer of one elec-
tron from one to the other side of the dot. If q0 is exactly
half-integer, i.e., �=0, there is an additional invariance un-
der the transformation +→++� and Q→2q0−Q. This
transformation corresponds to the transfer of one electron
half-way across the double barrier structure. This allows the
sequential tunneling through the quantum dot.

The energy cost for adding �removing� an electron to
�from� the ground state is given by

E� =
Ec

2
�1 � 2�Q0 − q0�	 = Ec��� + �H����	 , �13�

where �H�x� denotes the Heaviside step function.
Let us now consider a sequential tunneling process in the

case 1� ����0. For ��0 the ground state is given by Q0
=n. To transfer an electron through the quantum dot it first
goes from the left lead to the dot, which requires an energy
Ec�. In a second process it tunnels to the right lead which
sets this energy again free. For ��0 the ground state of the
dot is Q0=n+1 and the particle transfer begins with the tun-
neling of an electron from the dot to the right lead which
costs −�Ec�0 followed by the tunneling of an electron from
the left lead to the dot. Thus, for sequential tunneling with
��0 there is always one hard tunneling step which requires
an energy ���Ec. This Coulomb blockade plays a role at non-
zero temperatures T or voltages V0 as long as T ,eV0
�EC���. Because of the symmetry between the cases ��0
and ��0, we can restrict ourselves in the following to the
case ��0.

In addition to the charged excitations there are also neu-
tral excitations in the quantum dot of spacing ��v /a
=K / ��a�=KEc. Their maximum energy is �	c��v�, where
� is of the order of the Fermi momentum kF. If the tempera-
ture T is larger than KEc the quantization of the neutral ex-
citations in the quantum dot becomes irrelevant and the tun-
neling through the two impurities will become independent,
i.e., the tunneling is incoherent sequential. Alternatively, one
can say that the coherence length LT=�v /T of the displace-
ments of the electrons in the quantum dot is smaller than a.
In the opposite limit the tunneling is coherent. In the follow-
ing we will concentrate on this case.

In our model the neutral excitations are damped. Plas-
mons become diffusive on scales larger than L�=1 / �K��,
having a characteristic life time L� /v. Phase coherence in the

quantum dot is lost if L��a, i.e., if KEc��=�vK� where �
denotes the imaginary part of the plasmon energy.

C. Instanton action

The tunneling rate R through the impurity and hence the
current I=eR can be calculated from the imaginary part of
the free energy

R =
2

��
Im ln Z , �14�

where the partition function is

Z = Z0 + iZ1 =� D+���D−���e−S�+,−	/�. �15�

The real part of Z includes the �stable� fluctuations around
the classical ground state. Since the imaginary part Z1 of the
partition function is small compared with the real part Z0, the
tunneling rate can be written as

R �
2

��Z0
Im � D+���D−���e−S�+,−	/�, �16�

where the functional integral is with respect to the functions
���� defined on the interval �−�� /2,�� /2	 and satisfying
��−�� /2�=���� /2�. To calculate Z1 we follow a method
developed by Callan and Coleman.11 There exist the saddle-
point functions ̃���� which obey the equations

��S�+,−	
��

�
=̃

= 0. �17�

With ����= ̃����+����� the action close to the saddle
point trajectory can be written in the form

S�+,−	 − S�̃+,̃−	

� �
i,j=�

1

2
� d�d��� �2S

�i���� j����
�

=̃

�i���� j����

= �
i,j=�

n,m

Vi,n;j,man,iam,j = �
n

�ncn
2, �18�

where in the last step we have expanded ����� into a com-
plete set of orthogonal functions �n���, �����
=�nan,��n��� and then diagonalized the resulting quadratic
form in the an,�. One of the eigenvalues, �n=0, has to be
negative to give rise to the imaginary part. Thus

iZ1 = e−S�̃+,̃−	/�N� ��
n

dcn�exp�− �
n

�ncn
2/�� . �19�

One of the eigenvalue has to be zero corresponding to a shift
of the instanton in the � direction12 delivering a factor ��. Z0
can be calculated in the same way with only positive eigen-
values at the stable saddle point.

Performing this program is very difficult in the present
case. Instead, we will look for an approximate solution. In
this case the saddle point function ̃��a /2,�� will assume
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their ground state values �11� everywhere apart from the re-
gions where ̃��a /2,�� is increased by �. This advance-
ment of � is triggered by the applied external voltage. The
connection between these pieces are narrow kinks and anti-
kinks of width ��1 /U�aK /v. Further, we have to assume
that the width of the kinks is always smaller than the typical
kink-antikink spacing, which implies that the impurity is suf-
ficiently strong �depending on the applied voltage�. Thus the
saddle-point configuration ̃� is determined in our approxi-
mate scheme by the positions of the kinks and antikinks. A
kink-antikink pair will be called an instanton in the follow-
ing.

It is sufficient to consider the case when there is only one
instanton at each impurity with kink-antikink spacing equal
to �1 and �2 on the left and the right impurity, respectively.
To minimize the action we will assume that the centers of the
instantons have the same value of �. With our parametriza-
tion the saddle point ̃� is now found from the condition for
the instanton action �Sinst��1 ,�2� /��1,2 ��i=�i,s

=0. This gives

I = eR

� 2e−Sinst��1,s,�2,s�/� Im ��
d�1d�2

�exp�−
1

2�
�

i,j=1,2
� �2S��1,�2�

��i � � j
�

�i=�i,s

�i� j� , �20�

where �i denotes deviations from the saddle point. Here we
used Z0�1. The prime at the integral excludes the integra-
tion over the center of mass of the instanton. At zero tem-
perature this integral can be evaluated using the method in-
troduced in Ref. 11. It gives a power-law correction.
Unfortunately, at finite temperature we are not able to evalu-
ate it, although we expect it to be also a power law. In the
dissipation free case this correction is essential for a correct
power-law exponent. In the dissipative case it is less impor-
tant since the exponential part in Eq. �20� gives a dominating
exponential dependence.

Below we will consider only two cases: either instantons
of equal size appear at both impurities, corresponding to
̃−=0, i.e., �1,s=�2,s��s. This case will be called cotunnel-
ing. Or there is only one instanton either on the left or the
right impurity, corresponding to ̃+= �̃−, i.e., �1�2�,s��s
�0 and �2�1�,s=0. This case will be called sequential tunnel-
ing. Using the results obtained previously for the single
impurity8 case, the instanton action at T=0 can be written
down immediately. It takes the form

Sinst

�
=

2Skink

�
��H,���1� + �H,���2�	 +

2

K
�f��1� + f��2�	

−
eV0

2�
��1 + �2� + ��1 − �2�Esign��1−�2�

1

�
, �21�

where �H,��x� is a step function of width �. The different
terms have the following meaning: Skink denotes the action of
a kink, while t�e−Skink/� is the tunneling transparency of a
single impurity. The next term in Eq. �21� includes the kink-
antikink interaction with

f��� = �
0

	c

d	
�

I+�	�	2 �1 − cos�	��	 . �22�

The following voltage term describes the decrease in the en-
ergy by transferring an electron from the left to the quantum
dot and from there to the right. Note that the voltage applied
to at the ends of the system is, in general, different from the
voltage at the impurities. However, if the wire is not too long
and the impurities are strong, both voltages are approxi-
mately the same. Finally, the last term is the contribution
from the Coulomb blockade. Going over to dimensionless
time variable �KeV0 /�=y the action can be rewritten in the
form

S�y1,y2�
�

=
2Skink

�
��H,��y1� + �H,��y2�	 +

2

K
�F�y1� + F�y2�	

−
1

2K
�y1 + y2� +

1

K
�y1 − y2��X , �23�

where

F�y� = �
0

yZ d�

�

1 +
yY

���
�1 − cos ��

1 + exp�−
��

yX
1 +

yY

���
� , �24�

with

X =
Ec

eV0
, Y =

�

KeV0
, Z =

�	c

KeV0
. �25�

Here we have used the ratios X, Y, and Z of the relevant
energy scales of the problem. To calculated the integral we
will assume that always 1 ,X ,Y �Z, i.e., KeV0 ,� ,KEc
��	c. The integral can be approximated by the replacement
1−cos ���H��−1�. The calculation is done in Appendix
B and gives the final result �B6�.

D. Finite temperatures

So far we considered the case of zero temperature. At low
but finite temperature the action and its saddle points are
essentially unchanged, as long as the saddle point for � is
smaller than � /T. For larger T the tunneling rate is deter-
mined from the maximum of the action taken at �=� /T.13

Again, for sequential tunneling one of the saddle points of
�i,s vanishes. For the further discussion it is convenient, in-
stead of Eq. �25� to present the following dimensionless pa-
rameters:

XT �
KEc

T
, YT �

�

T
, ZT �

�	c

T
. �26�

Accordingly, the dimensionless imaginary time is redefined
as z=�T /�. This gives, instead of Eq. �23�, for the instanton
action
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S�z1,z2�
�

=
2Skink

�
��H,��z1� + �H,��z2�	 −

eV0

2T
�z1 + z2�

+
2

K
�FT�z1� + FT�z2�	 + �z1 − z2��

XT

K
, �27�

where FT�z� is given by Eq. �D1�. Note that here either z1
=z2=1 for cotunneling or z1=1 and z2=0 �or vice versa� for
sequential tunneling. The expressions for the currents at fi-
nite temperatures are derived in Appendix D.

E. Cross-over between sequential and cotunneling

As mentioned already, to find the tunneling rate and hence
the current I, we have to calculate the saddle points y1,s ,y2,s
of Eq. �23�. At T=0 the result depends on X ,Y ,Z as well as
on � and K. All terms in Eq. �23� are symmetric in y1 ,y2
apart from the last one which determines the difference be-
tween y1 and y2. These saddle points are calculated in Ap-
pendix C in Eqs. �C1� and �C2�, respectively. To find the
cross-over line between sequential tunneling and cotunneling
we have to equate the saddle-point action of the two cases:

2F�ys� − �1

2
− �X�ys =

2KSkink

�
+ 4F�yc� − yc. �28�

As it is shown in Appendix C the crossover between sequen-
tial tunneling and cotunneling happens at

Xc �
Ec

eV0
=

1

2��
1

1 + 2Y1
,

�

KeV0
= Y � 1

1 −
1

2 + KSkink/���Y�
,

�

KeV0
= Y � 1,�

�29�

where Y1�� t2K

2�Z2 �1/�1−K�. The crossover line is depicted in
Fig. 1.

Next we calculate the crossover between cotunneling and
sequential tunneling for finite temperatures. In this case the
crossover condition corresponding to Eq. �28� is given by

2

K
FT�1� + �

XT

K
=

2Skink

�
+

4

K
FT�1� . �30�

To solve this equation, we start with the regime � ,EcK�T,
in which FT�1� is given by the expression case �i� in formula
�D1�. In this regime Eq. �30� leads to

�XT =
2KSkink

�
+ 2 ln YT � 2. �31�

This violates the starting condition � ,EcK�T. Thus the
crossover between the sequential tunneling and cotunneling
is not possible in this regime. Similarly, it can be shown that
the crossover cannot happen in the regime XT

2 /YT�1�YT.
In the remain three regimes we find self-consistent solutions
for the crossover. These results are summarized by the fol-
lowing expression

�XT � �2KSkink/� , YT � 1 � XT

2KSkink/� + 2��YT − 1� , 1 � YT � XT

2KSkink/� + �2�YT + 2��YT/XT − 2�	 , 1 � XT
2/YT � YT.

� �32�

The various regimes and crossovers between them for finite
temperature are illustrated in Fig. 2.

III. COTUNNELING

A. Zero temperature

In this section we will consider cotunneling. In this case
the instanton covers both impurities, y1=y2=yc, and the elec-
tron will tunnel in one step through them.

In the regime of very weak dissipation, ��KeV0, i.e.,
regime �b��, we get

I � t4	��KEc

�	c
�2/K� eV0

�	c
��2/K�−1

, � � KeV0 � KEc

�33�

where 	��1 / �	c�
2� and ��1 /U is a short time cutoff. This

result is similar to the dissipation free case considered for a
single impurity by Kane and Fisher.3,4 This is intuitively ex-
pected since in the cotunneling process the island can be
effectively viewed as a “big” impurity with renormalized
strength. The factor t4 corresponding to the tunneling
through two impurities. Such a t4 prefactor has been found
previously in a study of Coulomb blockade in a system with

Y = Γ
KeV0

0 X = Ec

eV0

1
2∆

1
4∆

1
1+2∆

Y1

1
1+2∆

1

a b b′

c′

e′

d e

c

FIG. 1. Crossover diagram at zero temperature. Regions �a�–�e�
correspond to sequential tunneling, while regions �b��, �c��, and
�e�� to cotunneling. The dashed crossover line is given by Eq. �29�
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long range interaction.14 For K�1 the conductance G
= I /V0 diverges according to Eq. �33� which signals the ap-
proach to the perfect conductance G=e2 /h.

In the opposite regimes �c�� and �e�� of strong dissipation,
we find

I � t4	�e−2��/K2eV0� �

eV0
�3/2� �

�	c
��4/K�−1

�e2��/EcK − 1�−2/K,

KeV0 � �,KEc. �34�

Again, this result has the same voltage dependence as those
of the single impurity cases.8 As it follows from Eq. �34�,
dissipation strongly reduces the tunneling probability
through the impurities. The last factor is an interpolation
formula between the cases ��KEc and ��KEc, respec-
tively. Since this factor appears as well in the formulas be-
low, t2�e2��/EcK−1�−1/K� t2e−2/�a/KL� can be considered as
the effective transmission coefficient of the impurity in the
case of strong dissipation.

B. Finite temperatures

For nonzero temperature, besides KEc, �, �	c, and KeV0,
the temperature T appears as a energy scale. This allows in
general a large number of different regimes. In the following
we will therefore restrict ourselves to the case where KeV0 is
smaller than all other energies.

In the limit of weak dissipation �regime �b��	 we get for
the conductance

G � t4	�� T

�	c
��2/K�−2

, � � T � KEc �35�

which again agrees, apart from the factor t4, with the result
of Kane and Fisher3 in the dissipation free case. In the op-
posite regime �e�� of strong dissipation we get instead

G � t4	�e−8��/K2T�e2��/EcK − 1�−2/K, T � KEc,� .

�36�

It should be noted that the present approach does not allow
the precise determination of the numerical prefactors in the

exponential terms. The leading temperature dependence is
the same as for the single impurity case, see Ref. 8.

IV. SEQUENTIAL TUNNELING

A. Zero temperatures

Let us next consider the resonant case �=0 where the
cross-over line between sequential and cotunneling moves to
infinity. Then, according to Eq. �13�, starting with the ground
state Q=m, it does not cost energy to add a particle to the
quantum dot. To remove it from the quantum dot in the state
Q=m+1 does not cost energy as well. The tunneling rate for
each process is the same and follows from the saddle point of
Eq. �23� with y2=0 and y1=ys. Below we will present more
general results for the case which includes a weak deviation
from the perfect resonance.

If 0���1, bringing an electron to the quantum dot costs
an energy �Ec whereas in the second step, in which the
electron leaves the dot, this energy is again released. Thus
tunneling through the dot is dominated by the first step.
Similarly, if ��0, it costs first an energy ���Ec to bring an
electron out of the quantum dot whereas in the second step a
second electron tunnels from the left into the dot, which is
accompanied by an energy gain −���Ec. Thus, again the sec-
ond process is faster than the first one, the latter dominates
the tunneling probability. Both cases can be combined by
replacing � by its absolute value.

Plugging the expressions for the saddle points �C1� into
the action we get for the current in regime �a� of large volt-
age

I = GV0 � t2	�� eV0

�	c
��2/K�−1

, �,KEc � KeV0. �37�

This corresponds to nondissipative incoherent sequential tun-
neling and has the same voltage dependence as the single
impurity tunneling in the absence of dissipation.3 The critical
K value for the conductance G is K=1. For K�1 the con-
ductance increases for decreasing voltage signaling the per-
fect conductance in the zero voltage limit. It should however
be taken into account that this limit cannot be performed
because of the restriction KeV0��.

In the opposite limit of very low voltage �regimes �c� and
�e�	 we get instead

I � t2	�e−��/K2�eV0−2���Ec�� �	c

eV0 − 2���Ec
�3/2

��e2��/EcK − 1�−1/K, K�eV0 − 2���Ec� � KEc,� .

�38�

In these cases for ���=0 the system shows dissipative
resonant tunneling. In comparison with the corresponding
result for the cotunneling �34�, the expressions in Eq. �38�
are larger by an exponent 1/2 in the leading voltage depen-
dence �provided �→0�. Clearly, for all values of K dissipa-
tion is dominant and reduces the current strongly.

Finally, there are the intermediate cases �b�

I � t2	��KEc

�	c
�1/K� eV0 − 2���Ec

�	c
��1/K�−1

,

YT = Γ
T

0 XT = Ec

T1

1

2KSkink

h̄∆

a b b′

c′
c

e′

d

e

FIG. 2. Cross-over diagram at nonzero temperature. Regions
�a�–�e� correspond to sequential tunneling, while regions �b��, �c��,
and �e�� to cotunneling. The dashed crossover line is given by Eq.
�32�.
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�

K
� eV0 − 2���Ec � Ec �39�

and �d�

I � t2	�� �

�	c
��2/K�−1� �

eV0
�3/2

e−4��/K2eV0, Ec � eV0 �
�

K
.

�40�

In case �b�, Eq. �39�, under resonant conditions, ���=0, the
conductance G= I /V0 diverges for V0→0 and 1 /2�K, sig-
naling the perfect conductance. For small but finite �, how-
ever, the conductance is limited by G� t2	��� /�	c�1/K−2.
Case �d� corresponds to dissipative incoherent sequential
tunneling. In comparison with the dissipative single impurity
result,8 the expressions in Eq. �40� are smaller by an expo-
nent 2 in the leading voltage dependence.

Since in regimes �a� and �d� the tunneling through the two
impurities is independent, the total conductance can be cal-
culated by the formula for two identical conductances con-
nected in series, G=Gs�V0 /2� /2, where Gs�V0 /2� denotes the
conductance for single impurity with voltage drop V0 /2. This
also leads to results �37� and �40�.

One can notice that in some formulas �e.g., Eqs. �34� and
�40�	 no factor � appears, while in Eqs. �38� and �39� it
appears. The reason is that the latter two equations corre-
spond to regimes �b�, �c�, and �e�, see Fig. 1. In these re-
gimes, 2�Ec can be arbitrary close to eV0 when one is close
to the crossover between sequential tunneling and cotunnel-
ing. Formula �40� corresponds to regime �d�, which is always
far away from the crossover. This implies that �Ec is always
much smaller than eV0, and hence neglected in Eq. �40�.
Equation �34� is for cotunneling regime where the Coulomb
blockade term �i.e, the term that involves � in Eq. �23�	
disappears.

B. Finite temperature

At finite temperature we obtain various tunneling regimes
which have one to one correspondence to those at zero tem-
perature. Moreover, the discussions for these regimes apply
in both cases of zero and nonzero temperatures. Therefore, to
avoid unnecessary repetition we only give results for finite
temperature. We obtain for the conductance in regime �a�

G � t2� T

�	c
��2/K�−2

, �,EcK � T , �41�

which has the same temperature dependence as the single
impurity in the absence of dissipation.3

At low temperature we obtain the result of dissipative
resonant tunneling of regimes �c� and �e�

G � t2e−Ec���/TA3�T�e−2��/K2T�e2��/EcK − 1�−1/K,

T � KEc,
�KEc�2

�
,� . �42�

A3�T� is some power-law temperature-dependent function,
which is subdominant to the exponential temperature-
dependent part in Eq. �42�.

At intermediate temperature we find in regime �b�

G � t2�KEc

�	c
�1/K

e−Ec���/T� T

�	c
��1/K�−2

, � � T � KEc.

�43�

Thus the conductance in regimes �c�, �e�, and �b� is exponen-
tially suppressed away from resonance. At resonance �i.e.,
���=0� the conductance in regime �b� increases with decreas-
ing temperature if K�1 /2, signaling the perfect conductance
if �=0. For finite dissipation the conductance reaches a satu-
ration value �t2�� /�	c�1/K−2. Finally in region �d� we get

G � t2A4�T�e−8��/K2T,
�KEc�2

�
� T � � �44�

where A4�T� is again some power-law temperature-
dependent function.

V. CONCLUSIONS

In the present paper we have calculated the conductance
G of a dissipative Luttinger liquid with a quantum dot
formed by two strong impurities, using an instanton ap-
proach. The following results have been obtained.

�i� Resonance tunneling survives in the presence of dissi-
pation. However, unlike in the dissipation free case, the
transport is strongly suppressed by the dissipation, and per-
fect transmission is not possible on the resonance. Instead,
the conductance vanishes exponentially for small tempera-
ture and voltage �see Eqs. �38� and �42� with �=0	. In com-
parison with the case of single impurity in the presence of
dissipation, the transport on the resonance is still enhanced,
which is manifested by a lager conductance with decreased
exponential exponent by a factor 1/2.

�ii� Depending on the ratio of the Coulomb energy of the
quantum dot, ���Ec, and the temperature T �or the voltage
drop eV0, respectively�, there is a crossover from cotunneling
for low temperatures �or small applied voltage� to sequential
tunneling for larger temperatures �or voltage�. At resonance,
���=0, the region for cotunneling disappears completely and
the conductance is always due to sequential tunneling. The

T (KeV0)Γ KEc

G

e2

h

I II III

FIG. 3. Conductance as a function of temperature �voltage� for
the case of weak dissipation ��KEc.
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cross-over lines between cotunneling and sequential tunnel-
ing are given by Eqs. �29� and �32�, respectively �compare
also Fig. 1 and Fig. 2�.

�iii� If the voltage drop through the impurities eV0 is much
smaller than all other energy scales, the response of the sys-
tem is linear. Then for very weak dissipation, ��KEc, and
1 /2�K�1, the conductance at resonance, ���=0, shows a
minimum at T�KEc between the regimes �a� and �b� de-
scribed by formulas �41� and �43�. This result agrees with the
findings of Furusaki and Nagaosa.6 For very low tempera-
tures, T��, however, the conductance drops exponentially
due to the dissipation �see Eq. �42� and Fig. 3	.

Off resonance, for ���Ec�T, the conductance is exponen-
tially suppressed even at larger temperatures, see Eq. �43�.
This reduction in G is limited however by the crossover to
cotunneling, see Eq. �33�.

In the opposite limit of strong dissipation, ��KEc, the
conductance drops to exponentially small values as soon as
T�� �see Eqs. �42� and �44�	.

�iv� At T=0 and at resonance, �=0, the voltage depen-
dent conductance G= I /V0 shows a behavior similar to that
of the temperature-dependent conductance, as follows from
Eqs. �37�–�40�. There is again a nonmonotonic behavior for
��KEc and a monotonic behavior for ��KEc �see also Fig.
3�.
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APPENDIX A: LIST OF SYMBOLS

Symbol Definition Quantity

K Luttinger liquid parameter

v Excitation velocity

� Dissipation strength

	c High frequency cutoff

a Spacing between impurities

V0 External voltage

T Temperature

t Tunneling transparency

� K / ���v� Compressibility

Ec ��v / �Ka� Charging energy of the dot

� n+ 1
2 −

kFa

� Distance to the resonance

� �vK� Damping of plasmons

X Ec / �ev0�
Y � / �KeV0�
Z �	c / �KeV0�
XT KEc /T

YT � /T

ZT �	c /T

APPENDIX B: KINK-ANTIKINK INTERACTION

In this appendix we briefly describe how to calculate the
instanton action for the interaction between the kink and an-
tikink �i.e., F�y� given by formula �24�	. The integrant of the
integral on the right hand side of formula �24� shows several
crossovers in � space. These crossovers can be obtained by
equating Yy /� and the exponent of the exponential to 1,
separately. For Y �X, the crossovers are at �=Yy and �
=Xy, which separates the three regions ��Yy�Xy, Yy
���Xy, and Yy�Xy��. For Y �X, the crossovers are at
�=Yy and �=X2y /Y, which again separates three regions
��X2y /Y �Yy, X2y /Y ���Yy, and X2y /Y �Yy��. To
evaluate the integral we dissemble it into small ones accord-
ing to the different regions separated by the crossovers. We
consider the two cases Y �X and Y �X, separately. We start
with Y �X. For 1�Xy�Yy, we have

F�y� � �
0

Zy

d�
1 − cos �

�
= ln�Zy� . �B1�

For Yy�1�Xy, we have

F�y� �
1

2
�

0

Xy

d�
1 − cos �

�
+ �

Xy

Zy

d�
1 − cos �

�

=
1

2
ln�Xy� + ln�Z

X
� . �B2�

For 1�yY �yX, we have

F�y� �
1

2
�

0

Yy

d�
Yy�

�2 �1 − cos �� +
1

2
�

Yy

Xy

d�
1 − cos �

�

+ �
Xy

Zy

d�
1 − cos �

�

=
1

2
�2��Yy − 1� + ln�X

Y
� + 2 ln�Z

X
�� . �B3�

Now we discuss the case Y �X. For 1�Yy�X2y /Y, one
also gets the result formula �B1�. For X2y /Y �1�Yy, one
gets

F�y� � �
0

Yy

d�
Yy�

�2 �1 − cos �� + �
Yy

Zy

d�
1 − cos �

�

= 2��Yy − 1� + ln�Z

Y
� . �B4�

For 1�X2y /Y �Yy, one finds

F�y� �
1

2
�

0

X2y/Y
d�

Yy�

�2 �1 − cos �� + �
X2y/Y

Yy

d�
Yy�

�2

��1 − cos �� + �
Yy

Zy

d�
1 − cos �

�

=
1

2
�2�Yy + 2��Y

X
− 2� + 2 ln�Z

Y
�� . �B5�

Finally, the results can be summarized by
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F�y� =�
ln�Zy� , �i� yY,yX � 1

1

2
ln�Z2y/X� , �ii� yY � 1 � yX

1

2
�2�Yy + ln� Z2

XY
�� , �iii� 1 � yY � yX

2�Yy + ln�Z

Y
� , �iv� yX2/Y � 1 � yY

1

2
�2�Yy + 2�

Y

X
+ 2 ln�Z

Y
�� , �v� 1 � yX2/Y � yY .

� �B6�

APPENDIX C: CROSSOVER BETWEEN SEQUENTIAL
AND COTUNNELING

The saddle points for sequential and cotunneling are given
by Eqs. �C1� and �C2�, respectively.

ys =�
4

1 − 2�X
, �a� Y + 2�X,X�1 + 2�� � 1

2

1 − 2�X
, �b� Y + 2�X � 1 � X�1 + 2��

2�Y

�1 − 2�X�2 , �c� 1 � Y + 2�X � X�1 + 2��

8�Y

�1 − 2�X�2 , �d� X�1 + 2�� � 1 � Y + 2�X

2�Y

�1 − 2�X�2 , �e� 1 � X�1 + 2�� � Y + 2�X .

�
�C1�

Here the different areas of validity �a�–�e� are separated by
the lines X=Y, Y =1−2�X and X=1 / �1+2�� �see also Fig.
1�. These saddle points have to be compared with the saddle
points for cotunneling

yc =�
4, �a�� Y,X � 1

2, �b�� Y � 1 � X

2�Y , �c�� 1 � Y � X

8�Y , �d�� X � 1 � Y

2�Y , �e�� 1 � X � Y ,
� �C2�

with the areas of validity separated by the lines X=Y, Y =1,
and X=1 �see again Fig. 1�. Clearly, for �=0 both sets of
saddle points are identical, but the action of the cotunneling
process is always larger than that of sequential tunneling and
hence sequential tunneling prevails. Qualitatively, this re-
mains true for small but finite �X�1. However, if �X

becomes of the order one, the saddle points for sequential
tunneling move to larger values such that for X�Xc�Y� co-
tunneling sets in.

The crossover between the sequential tunneling and the
cotunneling is defined as the point at which the currents for
the two different tunneling mechanisms are equal. Assuming
��1, in Sec. II E it is pointed out that the crossover be-
tween the cotunneling and the sequential tunneling in re-
gimes �a� and �d� �i.e., X�1 / �1+2��	 cannot happen. This is
clearly illustrated in Fig. 1.

We start with very small Y �i.e., Y �Y1� such that near the
crossover the currents for the sequential tunneling and the
cotunneling are given by formula �39� for regime �b� and Eq.
�35� for regime �b��, respectively. The value of Y1 will be
determine afterward. After a straightforward calculation the
crossover is found to be

X =

1 − � t2K

2�Z2�1/�1−K�

2�
�

1

2�
. �C3�

However, this result is self-consistent only if the current for
the sequential tunneling is indeed given by formula �39� for
regime �b� �i.e., Y +2�X�1�X�1+2��	. This leads to a re-
striction on the validity of Eq. �C3�

Y � Y1 � � t2K

2�Z2�1/�1−K�

. �C4�

Y1 is essentially very small.
For Y slightly bigger than Y1, the current for the sequen-

tial tunneling is given by formula �38� for regime �c�, while
the current for the cotunneling remains in regime �b��. In this
situation the crossover is determined by
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t2	��Y

Z
��2/K�+�1/2��X

Y
�1/K

Z3/2�1 − 2�X�−3/2

�exp�−
�Y

K�1 − 2�X��
= t4	��X

Z
�2/K� 1

Z
��2/K�−1

, �C5�

where we have chosen to express the currents in terms of the
ratios of relevant energy scales X, Y, and Z. After some al-
gebra we obtain

X �
1 −

��Y

2KSkink

2�
�

1

2�
. �C6�

This result is valid for Y1�Y �1.
Now for 1�Y �X, the current for the sequential tunnel-

ing is still in regime �c�, while the one for the cotunneling
just moves into regime �c�� and is given by formula �34�. In
this regime the crossover is given by

t2	��Y

Z
�2−K+1/2�X

Y
�1/K

Z3/2�1 − 2�X�−3/2

�exp�−
�Y

K�1 − 2�X��
= t4	��Y

Z
��4/K�+�1/2��X

Y
�2/K

Z3/2 exp�−
2�Y

K
� , �C7�

which leads to

1 − 2�X =
�Y

2KSkink

�
+ 2�Y + ln� Z3

XY2� �
�Y

2KSkink

�
+ 2�Y

.

�C8�

This crossover implies that for 1�Y �X the range of X on
the crossover is within 1 / �4���X�1 / �2��. Thus, for
KSkink /��1 /� the crossover intersects with the line Y =X at

Y =X�1 / �4��; otherwise they meet at Y =X�1 / �2��.
For Y �X, the current for the sequential tunneling and the

cotunneling are given by formula �38� for regime �e� and Eq.
�34� for regime �e��. The crossover is given by

t2	��Y

Z
��2/K�+�1/2�

Z3/2�1 − 2�X�−3/2 exp�−
�Y

K�1 − 2�X�
�

�exp�−
2�Y

KX
�

= t4	��Y

Z
��4/K�+�1/2�

Z3/2 exp�−
2�Y

K
�exp�−

22�Y

KX
� .

�C9�

This leads to

1 − 2�X =
�Y

2KSkink

�
+ 2�Y + 2�

Y

X
+ 2 ln�Z

Y
�

�
�Y

2KSkink

�
+ 2�Y

. �C10�

Finally, the crossover between the sequential tunneling and
the cotunneling can be summarized as formula �29�. The
various regimes and the crossovers between them are illus-
trated in XY plane in Fig. 1.

APPENDIX D: CURRENTS AT FINITE TEMPERATURES

In this appendix we quote the final result for the function
FT�z�, which first appears in Eq. �27�. It reads

FT�z� =�
ln�ZTz� , �i� zYT,zXT � 1

1

2
ln�ZT

2z/XT� , �ii� zYT � 1 � zXT

1

2
�2�YTz + ln� ZT

2

XTYT
�� , �iii� 1 � zYT � zXT

2�YTz + ln�ZT

YT
� , �iv� zXT

2/YT � 1 � zYT

1

2
�2�YTz + 2�

YT

XT
+ 2 ln�ZT

YT
�� , �v� 1 � zXT

2/YT � zYT.

� �D1�

In the case of finite temperature, the previous saddle-point solution for zero temperature and finite voltage does not apply when
the distance between the kink and antikink is larger than the size of the imaginary time axis. Thus the maximum instanton
action occurs at �=� /T, i.e., z=1. Then the tunneling rate can be approximated as proportional to
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exp�− S�z1 = 1,z2 = 0�/�	

for the sequential tunneling and

exp�− S�z1 = 1,z2 = 1�/�	

for the cotunneling, respectively. Unlike in the case of zero
temperature, the tunneling rates along both the voltage-
favored and -unfavored directions are comparable. There-
fore, the current should be proportional to the difference be-
tween these two. To the lowest order of eV0, we get

I � eV0t2 exp�−
2

K
FT�1� −

�XT

K
� �D2�

for the sequential tunneling and

I � eV0t4 exp�−
4

K
FT�1�� �D3�

for the cotunneling. This approximation is not accurate
enough to give correct power-law temperature dependence of
the current. However, in the dissipative regime it captures the
dominant exponential temperature dependence. Plugging the
expressions of FT�1� into the above two formulas, we obtain
the results given in Secs. III B and IV B.
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